

Question Paper

Module 6:	Power and Automation		
Date:	Time:	Duration:	
12 May 2021	09:30 - 12:00	2½ hours	

You should have the following for this examination: one answer book, pencil, pen and ruler.

All questions carry equal marks. The maximum marks for each section within a question are shown. Answer **ALL SEVEN** questions, starting each new question (1-7) on a **new** page of the answer book.

1.	a)	Describe the THREE main factors governing energy use in flour milling.	(6 marks)
	b)	State the best way to use energy efficiently in the milling process	(1 mark)
	c)	Describe how a flour miller can reduce maximum demand charges.	(2 marks)
	d)	State THREE reasons why an electrical supply system may be modernised.	(3 marks)
2.	a)	Describe the TWO advantages of Variable Frequency Drives (VFDs).	(3 marks)
	b)	Describe the THREE main components of an electric motor.	(3 marks)
	c)	i) State the main purpose of the EU MEPS Scheme.	(2 marks)
		ii) Describe the key advantages of the scheme.	(4 marks)
3.	a)	State why it is essential to be in full control of the air used in flour milling.	(1 mark)
	b)	Sketch and label a typical positive pressure conveying system.	(5 marks)
	c)	State where you would usually choose to use a negative pressure conveying system instead of a positive pressure system.	(1 mark)
	d)	State the differences between a negative pressure pneumatic conveying system and a positive pressure system.	(5 marks)

continued overleaf

4.	a)	With the aid of a labelled sketch, describe a notched timing belt drive,	
		explaining its advantages over other types of belt drive.	(6 marks)
	b)	Describe FOUR ways in which friction is used in flour milling.	(4 marks)
	c)	Explain the main disadvantage of friction.	(2 marks)
5.	a)	Describe the THREE types of level measurement used for bin stock monitoring.	(6 marks)
	b)	Describe a modern strain gauge.	(3 marks)
	c)	With the aid of a sketch, describe how strain gauges are used in load cells.	(3 marks)
6.	a)	Describe the THREE types of PLC system.	(6 marks)
	b)	List the THREE main PLC programming languages, stating which is the most widely used.	(4 marks)
	c)	State the TWO main types of digital processor used in process control systems.	(2 marks)
7.	a)	Describe an example of:	
		i) a feedback loop used in a flour mill;	(2 marks)
		ii) a feedforward loop used in a flour mill.	(2 marks)
	b)	Describe how process control systems are used in the following areas:	
		i) Start up, shut down and suspend;	(4 marks)
		ii) Wheatfeed pelleting.	(4 marks)